An Endomorphism Whose Square Is Bernoulli

نویسندگان

  • CHRISTOPHER HOFFMAN
  • C. Hoffman
چکیده

One of the corollaries of Ornstein’s isomorphism theorem is that if (Y, S, ν) is an invertible measure preserving transformation and (Y, S, ν) is isomorphic to a Bernoulli shift then (Y, S, ν) is isomorphic to a Bernoulli shift. In this paper we show that noninvertible transformations do not share this property. We do this by exhibiting a uniformly 2-1 endomorphism (X, σ, μ) which is not isomorphic to the one sided Bernoulli 2 shift. However (X, T , μ) is isomorphic to the one sided Bernoulli 4 shift.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A dyadic endomorphism which is Bernoulli but not standard

Any measure preserving endomorphism generates both a decreasing sequence of σ-algebras and an invertible extension. In this paper we exhibit a dyadic measure preserving endomorphism (X, T, μ) such that the decreasing sequence of σ-algebras that it generates is not isomorphic to the standard decreasing sequence of σ-algebras. However the invertible extension is isomorphic to the Bernoulli two sh...

متن کامل

If the [ T , Id ] automorphism is Bernoulli then the [ T , Id ] endomorphism is standard

For any 1-1 measure preserving map T of a probability space we can form the [T, Id] and [T, T−1] automorphisms as well as the corresponding endomorphisms and decreasing sequence of σ-algebras. In this paper we show that if T has zero entropy and the [T, Id] automorphism is isomorphic to a Bernoulli shift then the decreasing sequence of σ-algebras generated by the [T, Id] endomorphism is standar...

متن کامل

A Zero Entropy T Such That the [t ,id] Endomorphism Is Nonstandard

We present an example of an ergodic transformation T , a variant of a zero entropy non loosely Bernoulli map of Feldman [1], such that the sequence of random variables generated by the [T ,Id] endomorphism is nonstandard.

متن کامل

Topological Entropy for the Canonical Endomorphism of Cuntz-krieger Algebras

and φA is the endomorphism induced on C(XA) by the one-sided subshift of finite type σA (see [6]) defined by (σAx)k = xk+1, x = (xk)k∈N ∈ XA. Therefore φA can be regarded as a non-commutative generalization of the one-sided subshift of finite type associated with the matrix A and the computation of its dynamical entropies is of some interest (see [4, Page 691]). When A(i, i) = 1, i ∈ Σ, one get...

متن کامل

Rigidity of smooth one-sided Bernoulli endomorphisms

A measure-preserving endomorphism is one-sided Bernoulli if it is isomorphic to a noninvertible Bernoulli shift. We show that in piecewise smooth settings this property is very strong and far more subtle than the weak Bernoulli property, by extending of results of W. Parry and P. Walters and proving new results based on continuity of the Radon-Nikodym derivative. In particular, we provide tests...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005